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Motivation
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Increasing disaster frequency and severity

3Source: https://www.latimes.com/projects/california-fires-damage-
climate-change-analysis/

The total number of acres burned over a 10 year
span in California wildfires increased by 50% over 
the last 10 years (LA Times, 2020)

> “Increasing likelihood of extreme weather events is the most noticeable and damaging 
manifestation of anthropogenic climate change.” (Otto et al., 2018)



> “Disaster risk reduction and more robust development planning are crucial in 
adapting to the increasing risks associated with climate change.” (van Aalst, 
2006) 

> One component of risk management: Evacuation planning and response

Disaster Management
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Source: https://www.canyon-news.com/hurricanes-tornadoes-
earthquakes-emergency-survival-plan/79632

Source: https://www.courthousenews.com/wp-content/uploads/2019/10/Evacuation.jpg



“(…) coastal settlements, including in small 
islands and megadeltas, and mountain 
settlements are exposed and vulnerable to 
climate extremes (…).” (IPCC, 2012)

> Many islands, coastal, and mountain 
settlements with potentially disrupted 
or non-existent evacuation routes

> Around 800 such communities in the 
U.S. alone (StreetLight Data, 2019)

> Self-evacuation may be impossible

Vulnerable Communities
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Source: https://www.streetlightdata.com/limited-evacuation-routes-map/



Isolated Community Evacuation Problem (ICEP): 
How to evacuate an isolated community without land-
based evacuation routes as quickly as possible?

Motivating Question
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Evacuation Framework
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Evacuation 
Study 

Components
(Tüydeş, 2005,

Southworth, 1991)

ICEP



Research Objectives
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Research Objectives

Design a new formulation to 
optimize ICEP evacuation routes

ICEP for evacuation planning ICEP for evacuation 
response
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> New formulation (ICEP) that models optimal evacuation 
of isolated communities without road-access through a 
coordinated resource fleet

> Heuristic and meta-heuristic solution approaches to the 
model makes it possible to get quality solutions quickly

> ICEP-based planning tool for emergency planners and 
researchers to prepare for a potential disaster

> ICEP-based response tool to make good decisions in times 
of uncertain numbers of evacuees during a disaster

Contributions of this Dissertation Research
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Formulations for D-ICEP 
and S-ICEP
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Network flow problem
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Non-linear
Multiple tours
Heterogeneous fleet

Evacuation area

Pick-up location (dock)

Drop-off location (shelter)

Evacuation resource



Routing problem
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Evacuation area

Pick-up location (dock)

Drop-off location 

Evacuation resource
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Trip 1

Trip 2

Trip 2

Trip 1

Evacuation area

Pick-up location (dock)

Drop-off location  

Evacuation resource 1

Evacuation resource 2

Minimize Evacuation Time 
with Deterministic ICEP



> Developed routing formulation to evacuate an isolated community 
without land-based evacuation routes

> Developed scenario-based evacuation planning tool from D-ICEP
> Validated as appropriate evacuation planning tool with emergency 

responders and coordinators (Bowen Island Municipality)
> Developed and tested constructive greedy heuristic 
> Published in: 

Contributions of D-ICEP 
and S-ICEP Formulations

15



Case Study for Planning 
Evacuations
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Bowen Island
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Source of image: Bowen Island Municipality



Study Process

18



> Validated suitability of S-ICEP for evacuation 
planning with practitioners in emergency 
management

> Detected high solution sensitivity
– Close collaboration with stakeholders necessary
– End-to-end data-modeling integration valuable

> Published in:

Contributions of the Case Study
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Meta-Heuristic Solution 
Approach
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Commercial solvers (e.g. CPLEX, Gurobi)
> Challenges:

– Routing problems are NP-complete
– Problem is very complex in structure and objective
– Trip expansion generates many binary variables 

> Consequences:
– For many instances commercial solver takes very long

Greedy heuristics (from previous section)
> Challenges:

– Unreliable solution quality especially for S-ICEP

How to solve the ICEP?
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> Reasons:
– Feasible region of ICEP very complex
– MP-BRKGA generates feasible solution in every iteration
– Population based structure is promising to avoid local 

minima effectively
– Proven track record for solving routing problems

Chosen Methodology:
Multi Parent Biased Random Key Genetic Algorithm 
(MP-BRKGA)
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Random-Key Genetic Algorithm 
(Bean, 1994)
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> Simplification of solution representation
> Use random keys [0,1] instead of variable values to represent 

solution

Source: Gonçalvez and Resende, 2011



Developed Chromosome Decoder Logic
Step 1
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1 2 … s s+1 s+2 … t t+1 … n

0.2 0.9 … 0.8 0.4 0.6 … 0.3 0.2 0.3

1 2 … s s+1 s+2 … t

0.2 0.9 … 0.8 0.4 0.6 … 0.3
Scenario level

s+1 s+2 t-1 t

0.4 0.6 0.1 0.3
Resource level

Mapping Index Dock

0 0 None

0.167 1 Evac Dock 1

0.333 2 Evac Dock 2

0.5 3 Safe Dock 1

0.667 4 Safe Dock 2

0.833 5 Safe Dock 3

Route plan 
Resource 1

Evac Dock 2

Safe Dock 1

None (Stay)

Evac Dock 1



Developed Chromosome Decoder Logic
Step 2
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Route plan 
Resource 1

Evac Dock 2

Safe Dock 1

None (Stay)

Evac Dock 1

Route plan 
Resource 2

Evac Dock 1

Evac Dock 2

Safe Dock 1

None (Stay)

Ordered arrivals Arrival time

R2: initial loc → Evac Dock 1 3:00 pm

R1: initial loc → Evac Dock 2 3:05 pm

R2: Evac Dock 1 → Evac Dock 2 3:20 pm

R1: Evac Dock 2 → Safe Dock 1 3:25 pm

R2: Evac Dock 2 → Safe Dock 1 3:40 pm

R1: Safe Dock 1 → Evac Dock 1 3:55 pm

1. Order all arrivals
Evacuees allocated

min(remaining evac. at ED1, remaining cap. R2)

min(remaining evac. at ED2, remaining cap. R1)

min(remaining evac. at ED2, remaining cap. R2)

Unload all evacuees on R1

Unload all evacuees on R2

min(remaining evac. at ED1, remaining cap. R1)

2. Allocate evacuees

3. Delete all trips after full allocation 4. Evaluate fitness of plan



Experiment Results
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Data 
label

No. 
resource
s

No. 
docks

Scenarios Gurobi MP-BRKGA (concurrent) MP-BRKGA (parallelized)

Solution 
time

Objective Solution 
time

Objective Solution 
time

Objective

Test 1 6 7 2 5.51s 101.03 109.77s (last 
imp.)

172.00 142.42s 124.00

Test 2 4 5 2 2.36s 56.67 188.13s (last 
imp.)

56.67 17.65s 56.67

Test 3 2 5 2 116.15s 229.00 375.28s (last 
imp., ran for 
3600s)

324.00 928.2s 232.64

Test 4 5 8 3 3600s 
(aborted)

313.04 805.57s (last 
imp., ran for 
3600s)

291.39 671.39s 259.73

Test 5 20 6 4 3600s 
(aborted)

178.04 1217.39s 
(last imp.)

218.25 908.63s 108.03



> MP-BRKGA quicker than Gurobi for large instances
> Possibility to run longer allows convergence in expectation
> Evolution in MP-BRKGA is too slow to compete with Gurobi

for small instances, even in parallelized case

Conclusions and Learnings
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> MP-BRKGA helps in solving large scale problems
> Important step towards more efficient solution methods for 

ICEP
> Invited submission to: 

Winter Simulation Conference 2022

Contributions of MP-BRKGA and Decoder
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ICEP for Evacuation 
Response
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> Goal: Make ICEP useful as a disaster response tool
> Relax assumption on certainty over evacuee 

numbers in D-ICEP upon start of evacuation
> Two solution approaches:

– Use historic data:
> Cardinality-Constrained Robust Optimization 

– Use data based on availability:
> Rolling-Horizon Optimization

Develop a response version of ICEP for 
evacuations with uncertain evacuees
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> Start with D-ICEP

> Create demand uncertainty sets from historic data or preliminary 
information with mean and max values !!, !! + $!! , ∀& ∈ (

> Introduce parameter ), where ) ∈ [0, |(|] is the number of locations where 
the demand can vary from mean values !!

> Introduce variable .!, ∀& ∈ (, which models decision in robust subproblem

> Add constraint: 0⃑ = argmax
{# ⊆%, # ' (}

∑!∈#$!!.!

> Modify first flow conservation constraint in D-ICEP to obtain R-ICEP:
!! = 8.!+ + ∑,!"#$∈ -.:0'! 8.!1

23 ∀& ∈ ( → !! + $!!.! = 8.!+ + ∑,!"#$∈ -.:0'! 8.!1
23 ∀& ∈ (

Robust Optimization (cardinality constrained)
(Soyster, 1973; Bertsimas and Sim, 2004) 
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Formulation Changes
D-ICEP -> R-ICEP
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> Relatively simple model expansion
> No budgets for uncertainty need to be considered since feasibility 

is not affected
> Model can be solved through two simple steps:

– Solve sub-problem
– Use outputs from sub-problem to solve main problem deterministically

> Model maintains same complexity as D-ICEP

Advantages of this Robust Optimization 
Implementation

33



Rolling-Horizon Optimization
(Sethi and Sorger, 1991)
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Initial demand 
estimate Run D-ICEP

Execute Route 
Plan

New 
informa

tion?

Wait for 
updates

Collect current 
evacuation 

status

Run D-ICEP on 
remaining 
problem

yes

no



RH-ICEP Algorithm
Example
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Resource 1 Resource 2

initial route plan
executed route segments

updated route plan
updated information



RH-ICEP Algorithm
Example
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Resource 1 Resource 2

initial route plan
executed route segments

updated route plan
updated information



RH-ICEP Algorithm
Example
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Resource 1 Resource 2

initial route plan
executed route segments

updated route plan
updated information



RH-ICEP Algorithm
Example
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Resource 1 Resource 2

initial route plan
executed route segments

updated route plan
updated information



> Incorporates new information that becomes 
available over time and improves route plan

> Can react dynamically to a shift in evacuation 
demand

> Every iteration, remainder becomes easier to 
solve as the problem size shrinks

> Complexity remains in worst case equivalent to D-
ICEP

Advantages of RH-ICEP
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Simulation Experiment Set Up
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Simulation Data
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> Full factorial !! experiment design
> Defined multiple parameters to investigate behavior



Experiment Results
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> RH-ICEP generally outperforms D-ICEP and R-ICEP
> Adaptiveness of rolling horizon implementation works 

efficiently
> R-ICEP only competitive for homogeneous data sets
> Performance ranking robust across simulated parameter 

settings
> Many parameters influence difference between algorithms

Conclusions
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> RH-ICEP and R-ICEP both provide substantial 
improvements over D-ICEP for response (up to 
12.5% improvement in evacuation time)

> Simple structure allows quick solution
> Planned submission to: 

Contributions of RH-ICEP and R-ICEP
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Final Conclusions and Future 
Work
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Evacuation Framework
Revisited
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Evacuation 
Study 

Components
(Tüydeş, 2005,

Southworth, 1991)

ICEP



> Interdependencies between model and on-land transportation
> Evacuation behavior plays a role in real-world scenarios

> Integration with on-land transportation into large simulation 
framework

> Consideration of evacuation behavior
> Generalization of model for more routing options
> Prioritization features

Challenges for Modeling Framework
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Future Work



> Escaping local minima is an ongoing challenge
> Convergence difficult to time

> Experiment with algorithm restarts on BRKGA, adaptive 
randomization rates and path relinking 

> Adding bias to decoder
> Alternative solution approaches:

– Other meta-heuristics
– Column generation

Challenges for Efficient Solution Approaches
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Future Work



> RH-ICEP robustly outperforms other options but establishing 
competitive ratio is challenging

> Exploration of more data set characteristics
> Real-world data set tests
> Combined robust and rolling-horizon optimization methods
> Incorporation of uncertainties in time components

Challenges for Response Tools
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Future Work



> Thanks to my committee:
– Prof. Linda Ng Boyle
– Prof. Anne Goodchild
– Prof. Chiwei Yan
– Prof. Xuegang (Jeff) Ban
– Prof. Michael R. Wagner

> Thanks to 
everyone else!

> Time for questions!

Thank You for a Great Time!
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